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Abstract. The dynamicd behaviour of the king model with heat-bath dynamics is studied. 
Acwrding to our investigation of the model usiqg the damage spreading method, the dynamical 
phase m i t i o n  t e m p e ”  is estimated as 4 . 5 2 i 0 . 0 3  for the 3D Ising model. The dynamical 
critical exponent L has been obtained as 2.16 + 0.04 for the m ferromagnet and 2.09 f 0.04 for 
the 3D lsing model. The scaling property of magnetization is obtained. 

1. Introduction 

In recent years, more and more attention has been paid to the study of the dynamical phase 
transition and critical exponents. A lot of simulation research on large-size spin system 
has been carried out to estimate the precise values, such as the critical temperature and 
dynamical critical exponent z. But with different (analysis or simulation) methods, the 
value for z varies over a relatively large range from 2.00 to 2.30. It is even argued that 
the value of the dynamical critical exponent z is uncertain. For the two-dimensional Ising 
model, with the dynamical high-temperature expansion method, Yahata and Suzuki [l] 
first found that the dynamical exponent z = 2.00 f 0.05 >~ y ,  which was previously 
believed to be z = y according to the conventional van Hove theory. The real-space 
RG method gave a value of 2.23~ [2], and the CAM approach reported the result as 
2.15 f 0.02 [3, 41. Meanwhile Poole and Jan [5] and Manna’s [6] simulation showed 
values as high as 2.24 and 2.27, but MacIsaac and Jan [7] and Ito’s [SI Monte Carlo 
simulations came to the conclusion that z = 2.16 f 0.02. Recent simulations on large 
systems seem to support the value with z = 2.165 f 0.010 [SI. For the three-dimensional 
Ising model, more inconsistent results have been obtained with different approaches. 
The renormalization-group estimation is z N 2.02. With multispin coding algorithms, 
Wansleben and Landau [9, 101 have calculated the dynamical exponent z = 2.04 f 0.03, 
which is consistent with the RG result. By simulation studies on the properties of 
magnetization and energy, Heuer [ll] has obtained a large value as z = 2.10 f 0.02, 
and Stauffer fit] and Ito’s [SI simulation on large systems suggested z = 2.06 f 0.02. 
Very recently Matz et ai [13] applied MacIsaac’s simulation method from the two- 
dimensional Ising model to the three-dimensional one, they reported a much larger value 
z = 2.35 f 0.05 by the normal scale (5 a LL), but when the scale was taken as 
z a L‘d, In(L), they got the value z = 2.05 f 0.05, which was much closer to the 
‘consensus’ value [14]. 

t Permanent address: Department of Applied Physics, Shanghai Jiaotong University, Shanghai 200030, People’s 
Republic of China. 
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About the critical temperature, there are also some arguments. Very recently, 
Grassberger [15] argued that the damage spreading critical temperature (Td) was not the 
same as that of its corresponding static model (Ts). With Glauber dynamics, he concluded 
that Td/Ts N 0.992 for the 2D king model and Td/Ts = 0.92 for the 3D Ising model. 
According to the above discussion, the dynamical critical temperature and the precise value 
of z are still very open questions 1141. 

In this paper, we will study the dynamical phase transition of the king model with 
nearest-neighbour pair interactions by the damage spreading method first. Then the 
dynamical critical exponent z is estimated at the critical temperature. In section 2, the 
dynamical Ising model and damage spreading method are introduced. In section 3, the 
curve of damage distance is investigated for the 3D dynamical king model at a finite Monte 
Carlo step. The transition temperature is estimated by the damage spreading method in 
this section. We will also calculate the dynamical critical temperature of the 3D king 
model with a finite scaling method. In section 4, the dynamical exponent z is estimated 
by three different methods. We will estimate the exponent z directly by calculating the 
average damage vanishing time for two different initial spin configurations. We will also 
estimate the exponent z by considering the shoa-time relaxation and integral scaling property 
of magnetization at the dynamical phase transition temperature. With our new dynamical 
critical exponent, the scaling property of the magnetization is given in section 5. Conclusions 
are presented in section 6. 

2. The dynamical king model and the damage spreading method 

In the damage spreading method 115-251, the damage distance between two different initial 
spin configurations is measured as they evolve in the same thermal noise. For a large class 
of spin models in statistical mechanics, the sharp dynamical phase transitions are observed 
with this method and these dynamical phase transition points separate two phases. One 
is a high-temperature (disorder) phase where spin distance is independent of the initial 
configurations and vanishes very rapidly. The other is a low-temperature (order) phase 
where the distance of two configurations remains finite for a long time. According to 
Demda’s investigations on the 3 0  spin-glass model [19] and the two-dimensional classical 
XY model 1201, the third phase between these two phases was found. It is called the 
intermediate phase, where the distance does not vanish but becomes independent of the initial 
condition. The damage spreading method is especially important in the cases, such as the 
spin-glass problems and commensurateincommensurate transitions, where the equilibrium 
phase transitions are hard to detect with standard Monte Carlo simulations. Recently, 
by studying damage spreading of spin models in a temperature gradient, Batrouni and 
Hansen [21] have obtained not only the critical temperatures but also critical exponents with 
high precision, such as the correlation length exponent U and the second critical exponent 
p. Glotzer et al [22] have also determined the static thermodynamic quantities correctly 
from damage spreading. 

Although it is a dynamical method, it has been argued that the transition points 
found with this approach often reflect the corresponding equilibrium transitions. Golinelli 
and Demda [20] have applied this method to the two-dimensional classical XY model. 
They have observed three regimes as in the case of the 3D spin glass [23, 241. One 
of their dynamical phase transition points (Tz = 0.95 0.05) coincides with the 
corresponding equilibrium transition point (Tm = 0.9) predicted by Kosterlitz and 
Thouless. Chiu and Teitel [25] have studied the same model with different dynamics 
and distance which preserve the rotational invariance of the Hamiltonian. Their results 
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contradict Golinelli and Demda's results. According to their investigations, only low- 
and high-temperature phases have been found and the transition occurs close to the 
Kosterlitz-Thouless transition TC = 0.89. From these investigations, it is suggested 
that damage spreading transitions may be related to the corresponding equilibrium 
transitions. Now, it is generally believed that for the dynamical king model the 
dynamical phase transition occurs at the same temperature as its corresponding static 
model. 

In this paper, we study the king models on the 2D square and 3D cube lattice under 
periodic boundary condition. The linear lattice size is L. For a given configuration {ui(f)], 
the Hamiltonian can be written as 

where C sums over all nearest-neighbour pairs of spins and J is the exchange interaction 
coefficient. To make the configuration {ui(t)) evolve in time, we apply the heat-bath 
dynamics. From the configuration ( q ( t ) ]  at time t ,  one chooses the site q ( t )  at the time 
t + l  by 

1 with probability 4 + tanh[C, Ju&)]/2 { -1 with probability f - tanh[x:, Juk(t)]/2 (2) 

where Ck is over all nearest spins of q( t ) .  The temperature is defined by T = J - ' .  To 
implement this dynamics, we choose a random number 0 < Z;(t) < 1 for each site and 
obtain 

Ui(t  + 1) = 

This means that if the transition probability W = f + tanh[C, Ju(t)]/Z z Z i ( f )  then 
ui(f + 1) =+I ,  otherwise q ( t  + 1) = -1. 

To compare the time evolution of two configurations {q(r ) )  and (ei@)] subjected to 
the same thermal noise. At each time step, the same random number Z j ( t )  is chosen for 
the ith site of the two configurations (ui(r)] and {&(t)]: 

Two configurations have different initial conditions. If they meet at a finite time t 
((q(t)] = {ei(t)]), it is not difficult to find that two configurations remain identical after 
that time f. So the distance between ( q ( i 0 ) )  and ( $ ( t ) ]  can be defined as 

D ( L ,  ~ , t )  = lqi(t) - ci( t ) l /zN (5) 

where N = Ld is the number of sites of the spin system. We use the distance to measure 
the correlation between two sets of spin configurations. In general, D(L ,  T, t )  depends on 
the temperature, the simulation time t ,  the system size L the initial conditions (ui(0)) and 
(&(O)], dynamics, the thermal noise and the boundary conditions. 
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In calculation, we average the distances over many samples. The average distance of 
the two spin configurations is defined as 

where Dj(L,  T ,  t )  is the damage distance for the jth independent trial, Ns is the number 
of independent samples, and the sum is over all trials. 

3. Dynamical phase transition of the 2~ and 3D Ising models 

For the 2D ferromagnet, Newmann and Demde [27] have applied the damage spreading 
method to get the results as T, = 2.25 f 0.05, which is consistent with the corresponding 
static phase transition. For the 3D Ising model, we use the same method to demonstrate the 
dynamical phase transition. The dynamical transition temperamre is also estimated by the 
finite scaling theory. 

The simulation result of ( D ( L ,  T ,  t ) )  is shown in figure 1 as a function of the temperature 
T at a finite Monte Carlo step with different lattice sizes. Two kinds of initial conditions 
are chosen: 

(i) {u;(O)] is random and 3;(0) = -a;(O), so (D(L,  T . 0 ) )  = 1 
(ii) {a;(O)] and {&(O)], are random and independent, so (D(L ,  7'. 0)) = 5. 
For different L,  we have simulated the average damage distance at t = 500 MCS over 
NS = 100 samples for different temperatures and find two temperature regions as shown in 
figure 1. At the high temperature, the distance vanishes or decreases very rapidly subject to 
thermal noise. At a time before f = 500 Mcs, two configurations become identical and since 
then the distances between two configurations remain zero. The system in this temperature 
range is under disorder phase. Because each spin configuration change rapidly with thermal 
noise at high temperature, the spontaneous magnetization of each configuration ms(t ) ,  

m(r) = (U;@)) = (3;(tJ) = 0. (7) 
By comparing with the ferromagnetic-paramagnetic transition, the spin system can also be 
assumed to be in the paramagnetic phase at high temperature. 

Figure 1. The average distance 
a~ f = 500 MCS against the 
tempemure. The distance is 
obtained by the average value over 
IO samples. Two phases are 0.00 

TemperatllreT observed. 
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At low temperature ( D ( L ,  T, t ) )  remains finite and depends on its initial condition. The 
reason is that the spins of the king model flip slowly subject to the thermal noise. Even 
at f = 500 MCS per site, two configurations are different and the distance between two 
configurations defined as (5) and (6) does not vanish. So the spin system is under order 
phase. If we choose the initial spin configurations as (~~(0)) = -[3:(0)} = 1, then at low 
temperature, the spontaneous magnetization 

= ( U i ( t ) )  # 0. (8) 
Similarly, the spin system is under ferromagnetic phase. This situation is quite similar 
to the equilibrium phase wansition of the ferromagnetic king model. Figure 1 shows the 
dynamical transition from the disorder to order phase when the system cools down. From 
figure 1, the transition temperature is difficult to estimate precisely. By considering the time 
decay of two spin configurations' damage distance at different temperatures, the dynamical 
transition temperature can be estimated. The figure of average damage versus time for 
different temperatures is shown in figure 2. When T < 4.43, the average distance does not 
vanish before 500 MCS. But when the system temperature is above 4.53, the damage of the 
two configuration decreases steeply. So the transition temperature can be estimated from 
the figure 2 as T ,  = 4.48 * 0.05. 

The more precise value of critical temperature is estimated by the finite scaling theory. 
With definition of the measure characteristic time rI and characteristic square time 72 as 
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Figure 3. The ratio RfL,  T) versus 
temperature T for the 3D king 
model. AU curyes cross at Tc = 
452 i 0.03. 

is independent of lattice sizes at dynamical critical temperature Tc. This means that 
for different L ,  all curves ( R ( L ,  T)) plotted as functions of T should cross at the same 
tempekture, i.e. the critical temperature Tc. The curves are shown in figure 3 for L = 8.16 
and 32, from which we get the critical temperature as TC = 4.52 f 0.03. The recent 
simulation result for T, of the 3D king model is about 4.5115 [14]. From our result for 
the 3D dynamical king model, the dynamical critical temperature is also consistant with its 
corresponding equilibrium critical temperature. 

With heat-bath dynamics, the dynamical phase transition in this model occurs near 
its corresponding equilibrium transition, which is similar to Golinelli and Derrida [ZO] 
and Chiu’s [25] work. But our result conkadicts Grassberger’ conclusion on the 3D 
dynamical Ising model with Glauber dynamics [15]. In our research, the distance of two 
spin configurations always depends on the initial distance before they vanish. This is also 
different from the spin glass [19] and XY model [ZO], in which the intermediate-temperature 
phase was found. 

In the following sections, we choose the critical temperature TC as 21 ln(1 + 4) for 
the 2D and 4.5115 for the 3D Ising models. 

4. Dynamical critical exponent 

4.1. By considering the average vanishing time 

Normally, the dynamical critical exponent z is defined at the dynamical critical temperature 
as s - LL, where L is the linear lattice size and s is the relaxation time for the dynamics. 
In the damage spreading method, the relaxation time can be defined by the time for damage 
to vanish. Near the critical temperature, the fluctuation is very strong. To measure the 
precise vanishing time from finite samples is difficult, because one may expect the time 
to be in a very large range for different samples. This is also one of the reasons for the 
uncertainty of the exponent z.  As we know, average distance ( D ( L ,  T ,  f ) )  actually is the 
ratio of damaged sites, which means the survival probability for a site to be damaged at t 
MCS. In this paper, we use the characteristic time as 
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Fire The log-log plots for 
the vanishing time T (i-) and value 
Q(L) (x) against the linear lanice 
size L for the 20 king model. The 
dy-cal exponents are estimated 
by the slopes of the lines as z = 
2.12 and 2.16. 

Figure 5. Similar plots as figure 4 
for the 30  l f i g  model, the estima- 
tions for z are about 2.05 aod 2.09. 

to measure the vanishing time. We choose the following all initial damaged configurations: 

We estimate the vanishing time at the dynamical critical temperature for this initial condition 
and repeat the simulation on different lattice sizes L for the 2D Ising model. In figure 4, the 
vanishing time for different L is denoted by '+' for the 2D king model. For every point in 
the figure, at least 1O1O single spin flips have been flipped. From the slope of the h e  the 
dynamical exponent is estimated as z 2 2.12. Similar research has been ,carried out on the 
3D king model and the result is shown in figure 5 with z Y 2.05. 

4.2. By considering the magnetization relaxation properry for short time on large-size 
lattice 

When the initial condition is chosen as (q(0) = 11 and {Zi(0)) = -1 [13], ( D ( L ,  T ,  t ) )  is 
equivalent to magnetization in this case. That is, 

{q(O)] = 1 = -{ei(o)). (13) 

m ( L ,  T ,  f) . (14) 
(UiW - &i(t)) 

( D ( L ,  T, 0) = 
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By considering scaling theory, the time-dependent magnetization m(L,  T, t )  from all up-spin 
configuration behaviour near the critical points as [28, 291 

m(T, L ,  t )  - L-p/”f(L””(T - Tc),  tL-2) (15) 

where the static exponent @ / v  = for the 2D and 0.518f0.007 for the 3D Ising model 1141. 
At L + CO, and T = Tc. for tL-& << 1, from the above scaling form, it is easy to conclude 
that the magnetization behaves as 1291 

By simulating on a large lattice with short Monte Carlo steps, we can estimate the value 
of z with the slope of the h e  in figure 6 for the 2D king model. For the 20 Ising model 
when the linear size L > 60, the lines for different lattice sizes can hardly be distinguished. 
We estimated the lattice as large as L = 400 to determine z. We got z Y 2.19 for the two- 
dimensional case. With the same method, we obtained z N 2.13 for the threedimensional 
king model ( L  = 64) as figure 6 shows. For each line, about 10’O single spin flips have 
been done. 

4.3. By considering the inagnetization integral scaling properry for  long-time simulation on 
relatively small sue lattice 

From the general scaling formula (15). we can calculate the integral 

From this simple scaling relation and static critical exponent, the dynamical exponent can 
be estimated easily. The points denoted with ‘x’ in figure 4 show the simulation results 
Q(L)  for the different lattice size L of the two-dimensional Ising model. The exponent z 
can be determined by the slope of the line as about 2.16. A similar investigation of the 3D 
Ising model shows z = 2.09 in figure 5. 

The merit of  this method is that it considers not only the short-time but also the long-time 
relaxation properties. 
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4.4. Ourfinal result for the dynamical exponents z 

We have estimated the dynamical exponent z by three methods. In the first method, only the 
long vanishing time is considered. In the second method, we have obtained z by studying 
the short-time relaxation property for magnetization. In the last method, we considered 
both of the above features by introducing an integral and obtained the exponent between 
the results by of the above two methods. With the above three different estimations for z ,  
we can conclude z = 2.16 & 0.04 for the ZD and z = 2.09 i 0.04 for the 3D king model 
with the heat-bath dynamics. 

5. The scaling property of magnetization 

With the new data for the dynamical critical exponent, we investigate the scaling property 
of magnetization at the dynamical critical temperature. In figure 7 we have given the curves 
for scaling quantities of magnetization and time. We,find that all curves satisfy the scaling 
formula (15) very well in a wide region for the ZD and 3D king models. 

Figure 7. The scaling propeny of 
magnetization for (a)  the ZD king 
model with L = 8, 12. 16, 32 and 
(b) the 3D king model with L = 6, 
8, 10, 14. 
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6. Conclusion 

With the damage spreading simulation method and finite scaling theory, we have obtained the 
dynamical phase transition TC = 4.52zk0.03 for the 3D Ising model, which is consistent with 
its corresponding static critical temperature. We also obtain the dynamic critical exponent 
z = 2.16 zk 0.04 for the 2D king model and z = 2.09 zk 0.04 for the 3D king model. 
Our dynamical exponent z for the 2D Ising model seems to support MacIsaac and Jan [7] 
and Ito’s [8] result. For the three-dimensional Ising model, we have obtained a little 
large value by comparing with the most other simulation results. It is consistant with 
Heuer’s result [ll]. Very recently, by investigating the early-time scaling property of the 
magnetization cumulant, Li et a1 1301 have obtained the dynamical critical exponent as 
z = 2.1337k0.0041 for the two-dimensional king model. This result seems to support our 
exponent (z E 2.12) obtained by considering the finite-size scaling property of the average 
vanishing time. With our new exponents, the magnetization satisfies the scaling formula in 
a very wide region. The scaling property for magnetization has been investigated. 
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